

Super Cryogenic Dark Matter Search - SuperCDMS

- <u>Science</u>: direct detection of dark matter WIMPs (and other exotic particles)
 - 'Conventional' WIMP candidates (e.g. SUSY)
 - 'Dark sector' particles (low-mass WIMPs)
 - Axions from the sun and/or the galaxy
 - Lightly-ionizing particles
- <u>Basic experimental setup:</u> Ge crystals with charge and phonon sensors on both sides (iZIP), operated at cryogenic temperatures, surrounded by layered shielding in a deep underground laboratory
- <u>Collaboration:</u> ~80 scientists from the US,
 Canada, France, Spain
- <u>Funding:</u> US (DOE, NSF) with contributions from Canada (NSERC, CFI)

Schematic of the CDMS experiment

Photo showing iZIP detector towers at Soudan

SuperCDMS = iZIPs

A Detector Breakthrough Against Surface Backgrounds

- O Low Yield Outliers
- Neutrons from Cf-252 Calibration

Demonstrated background leakage <1.7E-5

Sufficient for G2 dark matter search!

SuperCDMS Soudan G1 Operating Experiment

- Operations: Taking data since March 2012
- Plans: "Technical stop" for maintenance underway. Will be cold again by early September. Plan mixture of physics data and technical studies through March 2015, possibly until September 2015

- CDMSlite
 - arXiv:1309.3259v3; published in PRL)
- SuperCDMS low threshold
 - arXiv:1402.7137v2; published in PRI)

Upcoming Results:

- CDMSlite run 2
 - More data, background subtraction
- SuperCDMS "high threshold"
 - Background-free results from full data set

SuperCDMS Soudan Data Set

SuperCDMS Soudan Operations Plan

- Warmup for maintenance
 - Replace cold head on cryocooler
 - Service He pumps
- Studies over the next 6-12 months
 - Extended calibrations (detailed detector response)
 - Better understanding of backgrounds
 - Study electrical and vibrational noise sources and ways to reduce these
 - Determine reasons for failures of detector channels
 - See if we can run a double-sided CDMSlite detector to achieve lower backgrounds and lower energy thresholds

SuperCDMS SNOLAB Recently selected as G2 experiment

- <u>Science</u>: direct detection of dark matter WIMPs with focus on light masses (< 10 GeV/c²)
 - 'Conventional' WIMPs
 - 'Dark sector' particles (low-mass WIMPs)
 - Other exotic particles (axions, LIPs,...)
- New experimental setup: Larger, cleaner cryogenics and shielding system, with capacity for up to 400 kg of target mass
- <u>Location:</u> SNOLAB, Sudbury, Ontario Canada (deepest clean laboratory in North America)
- <u>Timescale:</u> R&D (FY15), Fabrication (FY16-18), Operations (FY19-22)

1.3 kg Ge iZIP prototype detector

SuperCDMS SNOLAB Reach

